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Abstract 

This study investigates the effect of introducing a fiscally neutral increasing block-rate water 
budget price structure on residential water demand. We estimate that demand was reduced by at 
least 18 percent, although the reduction was achieved gradually over more than three years. As 
intermediate steps the study derives estimates of price and income elasticities that rely only on 
longitudinal variability. We investigate how different subpopulations responded to the pricing 
change and find evidence that marginal, rather than average, prices may be driving consumption. 
Additionally, we derive alternative rate structures that might have been implemented, and assess 
the estimated demand effects of those rate structures.  

1. Introduction 

As urban water utilities confront increasingly scarce and less reliable water supplies due to 
population growth, environmental regulation, and climate variability, water managers are seeking 
opportunities to reduce residential water demand. While the adoption of non-price instruments 
(e.g., short-term water restrictions, subsidies for water-saving technologies, and public awareness 
campaigns) likely will continue to be widespread, volumetric pricing and, in particular, block-rate 
pricing is gaining traction. This is not surprising to economists who have long espoused the merits 
of pricing as an efficient and effective means to address water scarcity (e.g., Howe and Linaweaver 
1967; Chesnutt and Beecher 1998; Renwick and Green 2000; Griffin 2001; Dalhuisen et al. 2003; 
Olmstead and Stavins 2009; Grafton et al. 2011). One challenge confronting water utilities that are 
considering switching to volumetric pricing is identifying the particular rate structure that is best 
suited to their needs. One structure that is increasingly being adopted by California water utilities 
is the increasing block-rate water budget. 

Increasing block-rate (IBR) water budgets (which we refer to herein more simply as “water 
budgets”) are a particular type of escalating tiered price structure in which the block sizes are based 
on household-specific characteristics (e.g., household size, irrigated area), environmental 
conditions (e.g., evapotranspiration), and a judgment by the water utility with regard to what 
constitutes “efficient” water use given those characteristics and conditions. This means that price 
structures can differ across households at any given time, and through time for any given 
household. Water budgets are a relatively new pricing tool. One of the earliest adopters was the 
Irvine Ranch Water District (IRWD) in Southern California, which instituted such pricing in the 
early 1990s (IRWD 2013).  

Water budgets are thought to have significant advantages over more commonly used rate 
structures. A water budget creates a strong incentive for conservation by charging higher prices 
for additional water only when total consumption exceeds a household’s “efficient” level of use 
for the current billing period (Mayer et al. 2008). The Irvine Ranch Water District reports that in 
the 13 years following the introduction of water budgets, average per-acre outdoor water use 
declined by 61 percent (IRWD 2013). Water budgets also can accommodate equity concerns by 
charging lower prices for the most essential uses of water such as drinking, cooking, and cleaning 
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(Mayer et al. 2008). Last, water budgets provide utilities with the ability to respond flexibly and 
immediately to evolving environmental and fiscal conditions with a price-based regulatory 
instrument (Mayer et al. 2008).  

As of 2008, fewer than 14 California water utilities had implemented IBR water budgets 
(Mayer et al. 2008), even though around 50 percent of all California water utilities were utilizing 
IBR pricing as of 2005 (Hanak 2005). Recently, though, there appears to be renewed interest in 
water budgets. This trend has been driven, in part, by California’s “20x2020 Water Conservation 
Plan,” which aims to reduce statewide per-capita urban water use by 20 percent before 2020 
(SWRCB 2010). Between 2008 and 2011, at least nine Southern California water utilities adopted 
IBR water budgets as part of their efforts to comply with the plan (Ash 2011).  

Despite the potential advantages offered by water budgets and renewed interest by utilities, 
there remain widespread uncertainties and concerns about switching to such a price structure. A 
prominent concern, and the focus of this study, is the extent to which water budgets actually reduce 
demand. Statistics such as a 61 percent reduction in per-acre outdoor water use claimed by IRWD 
can be misleading because observed changes in demand are the product of multiple competing 
effects. For example, changes in the broader economy can drive per-capita water demand up or 
down as prices and incomes fluctuate. Changes in weather and climate, such as cyclical 
precipitation patterns or regional temperature trends, are important drivers of outdoor water use. 
Changes in the availability of, and preferences for, water conserving technologies (such as climate-
controlled irrigation systems and low-flow toilets and sprinkler heads) can reduce demand. And 
even population growth can reduce per-capita demand if new homes must be built with such water-
efficient technologies. To determine the effect of introducing an IBR water budget rate structure 
on demand, these other factors must be accounted for.  

Another related issue is the transferability of results from one water utility, such as IRWD, 
to others. The extent to which a water budget rate structure impacts demand depends on the 
features of the rate structure and how those features compare to the rate structure that it replaces: 
water budgets with smaller blocks and higher prices should have greater effects on demand ceteris 
paribus. Therefore we might not expect the outcome for a particular water utility to be relevant for 
other utilities, unless those utilities intend to adopt similarly structured water budgets and have 
similar customer bases. Although rate structures clearly will differ across utilities, there is one 
fairly common feature that can be used as a convenient benchmark to increase the transferability 
of results across utilities. In many cases, such as the Southern California examples cited above, 
utilities will desire to maintain fiscal neutrality when switching from flat rates to water budgets in 
order to avoid incurring budgetary surpluses or deficits. Indeed it is often a requirement that 
utilities attempt to set their rates to match revenues with costs. Focusing on fiscally neutral rate 
structures thus narrows the scope of the investigation significantly while promoting broader 
applicability of the results.  

With these issues in mind, this study estimates the effect of introducing a revenue-neutral 
IBR water budget rate structure on residential demand in the Eastern Municipal Water District 
(EMWD) of Southern California. The dataset follows more than 13,000 single-family households 
with continuous monthly water use records from 2003-2012. We account for socio-economic 
differences across households and through time with data from the U.S. Bureau of the Census and 
Bureau of Economic Analysis. We control for climate variability with spatially and temporally 
variable estimates of evapotranspiration. We include a time trend to capture changes in preferences 
and technologies, and we hold the housing stock fixed in our sample to control for vintage effects.  

We estimate that EMWD reduced water demand by at least 18 percent by switching to IBR 
water budgets with no appreciable impact on its fiscal balance, although the reduction was 
achieved gradually over more than three years. As intermediate steps we derive estimates of price 
and income elasticities that rely only on the longitudinal variability in our panel dataset. We 
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investigate how different subpopulations of households responded to the pricing change and find 
convincing evidence that marginal, rather than average, prices may be driving consumption 
choices. We also use a discrete-continuous choice model of water demand under IBR pricing to 
derive alternative rate structures that might have been implemented, and compare their estimated 
demand effects with the actual rate structure that was implemented. We find that additional 
demand reductions could be achieved by increasing particular block prices or decreasing particular 
block volumes, or by removing, splitting, or adding additional blocks in simple ways, while 
maintaining stable revenue per unit. From these observations we draw some implications for water 
utilities that are considering implementing IBR water budgets and discuss directions for future 
work.  

2. Related literature 

The literature on residential water demand and pricing is large. Dalhuisen et al. (2003) provide an 
overview as part of their meta-analysis of 64 pricing studies between 1963 and 2001. A significant 
analytical innovation was provided by Hewitt and Hanemann (1995), who demonstrate how the 
discrete-continuous choice (DCC) framework of Burtless and Hausman (1978) can be applied to 
structural analysis of water demand under block-rate pricing. Recent empirical studies using the 
DCC framework include Pint (1999), Olmstead et al. (2007), Olmstead (2009), and Miyawaki et 
al. (2011). However many studies continue to use reduced-form demand estimation for block-rate 
analysis (Fordyce 2005, cited by Olmstead 2009), perhaps due to the computational difficulty of 
estimating the DCC model.  

The DCC model has been critiqued recently by Strong and Smith (2010), who argue that 
applied welfare analysis is problematic within a DCC framework because the Marshallian demand 
function does not exist when the budget constraint is nonlinear (Bockstael and McConnell 1983). 
Strong and Smith instead propose estimating the structural parameters of the direct utility function 
for purposes of welfare analysis. However, largely due to the nature of their data, their approach 
stops short of a framework that permits individual consumers to locate at the kink points on their 
budget constraints, or that permits simulating changes in any aspect of the price structure, 
including scenarios that might cause consumers to move consumption to different facets of their 
budget constraints.1  

The main thrust of the most recent empirical work on IBR water pricing has been 
investigations of consumer price responsiveness, and whether price elasticities appear to differ 
across price structures. Olmstead et al. (2007) find evidence that price elasticity does appear to 
differ between flat and block-rate price structures but they are unable to provide a definitive 
conclusion due to unresolved endogeneity issues in their data. The main focus of our study is 
related to but distinct from this work. Rather than comparing parameter estimates under flat and 
block-rate structures, we estimate a flat-rate model that then is used to predict what demand would 
have been if IBR water budgets had not been adopted. We then investigate the differences between 
observed and predicted demand to characterize the demand effect of IBR water budgets. To our 
knowledge this is the first study to utilize IBR water budget pricing data, and the first to estimate 
the demand effect of introducing such a price structure. 

3. Empirical situation and data 

The data for this study come from the Eastern Municipal Water District (EMWD) of Southern 
California. EMWD is a member agency of the Metropolitan Water District of Southern California, 
and serves a diverse region of western Riverside County that includes the cities of Moreno Valley, 

1 While the ability to conduct welfare analysis within the DCC framework is clearly a fundamental issue, and development of a 
theoretically consistent approach would be an important contribution, this study does not undertake welfare estimation and 
therefore adopts the established DCC model for block rate price analysis.  
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Perris, Hemet, Murrieta, and Temecula. This region covers 542 square miles and has a population 
of more than 768,000 (EMWD 2013). As of 2012, EMWD provided around 90,000 acre-feet of 
water to approximately 136,000 domestic water service accounts and a much smaller number of 
agricultural and irrigation water service accounts (EMWD 2013).  

EMWD is trying to achieve a state-mandated 20 percent reduction in per-capita water use 
before 2020. Prior to April 2009, EMWD charged each household a fixed “daily service charge” 
(DSC) plus a flat price per unit of water consumed. Beginning in April 2009, EMWD changed 
from flat-rate pricing to household-specific IBR water budgets to help achieve the 20 percent 
reduction. There are four blocks in this IBR price structure. The cumulative block sizes are 
calculated as follows:2 

Block 1. Indoor water use: 𝑤𝑤1 = (𝐻𝐻𝐻𝐻𝐻𝐻 × 𝑃𝑃𝑃𝑃𝑃𝑃) × 𝐷𝐷𝐷𝐷 + 𝐼𝐼𝐼𝐼 
Block 2. Outdoor water use: 𝑤𝑤2 = 𝑤𝑤1 + (𝐸𝐸𝐸𝐸 × 𝐶𝐶𝐷𝐷 × 𝐼𝐼𝑃𝑃 + 𝑂𝑂𝐼𝐼) × 𝐷𝐷𝐷𝐷 
Block 3. Excessive water use: 𝑤𝑤3 = 1.5 × 𝑤𝑤2 
Block 4. Wasteful water use: water use in excess of 𝑤𝑤3 

Variables used to calculate block sizes are household size (HHS), per-person allowance (PPA), 
drought factor (DF), indoor variance (IV), evapotranspiration (ET), conservation factor (CF), 
irrigated area (IA), and outdoor variance (OV). HHS is reported to EMWD by each household;3 
PPA is set by EMWD at 60 gallons per day; DF is set less than or equal to 1, depending on 
environmental conditions;4 IV is negotiated between EMWD and households that report unusual 
indoor circumstances such as medical need or in-home daycare; ET is derived from real-time 
measurements for a reference crop which are then adapted to 50 designated microclimate zones 
within the EMWD service area; CF converts the reference crop ET to turfgrass ET;5 IA is reported 
to EMWD by each household;6 and OV is negotiated between EMWD and households that report 
unusual outdoor circumstances such as maintenance of large animals or turfgrass establishment.  

Block-specific prices are set such that 𝑝𝑝1 < 𝑝𝑝2 < 𝑝𝑝3 < 𝑝𝑝4, where 𝑝𝑝𝑘𝑘 is the price charged 
for block k. A household’s “water budget” is defined as the first two blocks, or cumulative 
consumption of 𝑤𝑤2. Consumption above 𝑤𝑤2 is deemed to be “excessive” or “wasteful” and is thus 
charged a significantly higher price than consumption below 𝑤𝑤2. It is worth emphasizing that 𝑤𝑤2 
and 𝑤𝑤3 are functions of ET and thus fluctuate from month-to-month. When ET is high, households 
are allocated larger monthly water budgets (i.e., more water in blocks 2 and 3); when ET is low, 
households are allocated smaller budgets.  

To analyze the demand effect of introducing IBR water budgets, we identified 13,565 
residential accounts with uninterrupted monthly water consumption records between January 2003 
and September 2012. The fact that these accounts remained open is a good indication that there 
were no tenancy changes in these households during this period.7 In addition to monthly water 
consumption data, EMWD also provided information on prices paid by each account, the 
household size (HHS) and irrigated area (IA) associated with each account, dates when households 
were asked to increase their water conservation efforts (e.g., due to system maintenance or local 
supply scarcity), monthly ET during water budgeting for each of the 50 microclimates, and the 
relevant microclimate for each account. EMWD also provided the latitude and longitude of the 

2  The block labels (i.e., indoor, outdoor, excessive, and wasteful) are EMWD’s terms.  
3  EMWD uses a default value of 3 if a household does not report the household size, and requires verification if a reported value 

exceeds 9 people.  
4  In our dataset, DF = 1 for all observations.  
5  Most water districts assume a baseline of turf grass given its high ET relative to most other grasses and plants; consequently, 

these districts are providing an overly-generous allocation for ET. 
6  EMWD uses Riverside County Assessor data to calculate a default value (up to a maximum of 6,000 sq-ft) if a household does 

not report the irrigated area, and requires verification if reported values seem excessive.  
7  An exception could be rental properties for which the utility accounts are registered to the owner rather than the tenants. We 

are not able to identify such accounts in our dataset.  
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meter for each account, which enables us to georeference against census data to obtain information 
on income and education at the tract level.  

A crucial piece of missing data is microclimate ET during flat-rate pricing. During this 
period EMWD had no need for ET data and thus did not track it. Obtaining this data directly from 
the commercial provider was prohibitively costly, so we developed a simple but effective model 
to estimate it. First we obtained publicly available ET data from three CIMIS stations in western 
Riverside County.8 We then regressed EMWD’s available ET data for each of the 50 climate zones 
on the CIMIS ET data and a set of 12 monthly dummy variables as follows: 
 𝐸𝐸𝐸𝐸𝑧𝑧𝑧𝑧 = 𝛽𝛽𝑧𝑧𝑧𝑧 + 𝛽𝛽𝑧𝑧1𝐸𝐸𝐸𝐸1𝑧𝑧 + 𝛽𝛽𝑧𝑧2𝐸𝐸𝐸𝐸2𝑧𝑧 + 𝛽𝛽𝑧𝑧3𝐸𝐸𝐸𝐸3𝑧𝑧 + 𝜀𝜀𝑧𝑧𝑧𝑧. [1] 

Here, 𝐸𝐸𝐸𝐸𝑧𝑧𝑧𝑧 is observed ET for climate zone (z) during month (t); 𝛽𝛽𝑧𝑧𝑧𝑧 is a constant term that applies 
only to a given zone (z) and month (m) – in other words, there are 12 such coefficients for each 
zone; 𝛽𝛽𝑧𝑧1 is a slope coefficient that is specific to zone (z) and that relates changes in ET at the first 
CIMIS station to observed changes in ET for zone (z); 𝛽𝛽𝑧𝑧2 and 𝛽𝛽𝑧𝑧3 are defined similarly for the 
other two CIMIS stations; 𝐸𝐸𝐸𝐸1𝑧𝑧 is monthly ET at the first CIMIS station, and similarly for the other 
stations; 𝜀𝜀𝑧𝑧 is the residual.   

Equation 1 is estimated separately for each of the 50 climate zones using ordinary least 
squares to produce a set of coefficient estimates that is specific to each zone. Estimation results 
are very good. The mean absolute prediction error across all regressions is only 2.2 percent. The 
highest error for any month is 7 percent; the highest error for any zone is less than 4 percent. 
Adjusted R2 values for the 50 zones are all between 0.976 and 0.992. We then use the coefficient 
estimates to predict ET values for the entire observation period and use these predictions in our 
analysis. Figure 1 presents a typical comparison of observed and predicted ET monthly values for 
a representative climate zone.  

Summary statistics for the data used in the regression analyses that follow are presented in 
Table 1.9 Conservation requests refer to the fraction of months in which households were asked to 
increase water conservation efforts. Nominal and real prices are the prices charged per hundred 
cubic feet (CCF) of water (one flat rate from 2003 to 2008; four increasing block rates from 2009 
to 2011). Under flat-rate pricing, these prices are the same as the average prices paid by 
households. However under water budgeting, the average price paid is a function of water 
consumed and thus is listed separately in the table. 10 As in Strong and Smith (2010), budgets are 
based on census income (Minnesota Population Center 2011) and are adjusted for the fraction of 
income typically spent on the category of “utilities, fuels, and public services.” (U.S. Bureau of 
the Census 2012).11 Budgets also are adjusted for temporal changes in per-capita personal income 
for the Ontario-Riverside-San Bernardino metropolitan statistical area (U.S. Bureau of Labor 
Statistics 2013). Education is expressed as the fraction of the census tract reporting “some college” 
or more education (U.S. Bureau of the Census 2012). Household size, irrigated area, and education 
are treated as constant characteristics, because we lack information on monthly changes in these 
variables.12 Figure 2 presents selected summary statistics as relative trends through time, with 2003 
values normalized to unity. As can be seen in the figure, ET and real budgets changed little during 

8  CIMIS is the California Irrigation Management Information System, developed and maintained by the California Department 
of Water Resources (www.cimis.water.ca.gov).  

9  Data for 2012 is from January through September only and is thus omitted from the table for purposes of comparison. 
However it is worth noting that nominal block prices in 2012 are unchanged from 2011 and thus real block prices in 2012 are 
slightly lower than for 2011. Data for 2012 is included in the regression analyses.  

10  Average price paid in 2009 is a blend of flat rates for January through March (nominally unchanged from 2008) and block 
rates for April through December (shown in the table).  

11  Using data from the 2010 Consumer Expenditure Survey, we estimate the following relationship between budget (𝑦𝑦) and 
income (𝑚𝑚) for the range of incomes observed in our sample: 𝑦𝑦 = 99.8941𝑚𝑚0.3339, R2 = 0.9915. 

12  Census data suggests that overall education levels in the study area remained fairly constant from 2000 to 2010.  
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the period of analysis, while there are noticeable changes in demand and prices, particularly after 
2007. 

4. Estimation strategy 

To facilitate comparisons, our analysis is based on a log-linear demand model similar to that used 
in previous studies of block-rate water pricing (e.g., Hewitt and Hanemann 1995; Pint 1999; 
Olmstead et al. 2007; Olmstead 2009): 
 𝑙𝑙𝑙𝑙(𝑤𝑤𝑖𝑖𝑧𝑧) = 𝛿𝛿𝑧𝑧𝑖𝑖𝑧𝑧 + 𝛼𝛼𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖𝑧𝑧) + 𝛾𝛾𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖𝑧𝑧) + 𝜂𝜂𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑧𝑧  [2] 

Here, 𝑤𝑤𝑖𝑖𝑧𝑧 is demand by household (i) during month (t); 𝑧𝑧𝑖𝑖𝑧𝑧 is a vector of household, economic, and 
environmental characteristics that are thought to affect demand; 𝑝𝑝𝑖𝑖𝑧𝑧 is the marginal water price 
faced by the household; 𝑦𝑦𝑖𝑖𝑧𝑧 is the household’s budget for utilities and related expenditures; 𝜂𝜂𝑖𝑖 
captures unobserved preference heterogeneity; 𝜀𝜀𝑖𝑖𝑧𝑧 is an error term capturing the remaining 
unexplained variation in demand; and {𝛿𝛿,𝛼𝛼, 𝛾𝛾} are parameters to be estimated.  

Equation 2 forms the basis for two separate estimations: (1) a flat-rate demand model 
estimated using 2003-08 data, and (2) an IBR demand model estimated using 2009-12 water 
budget data.13 For the flat-rate demand model, we model unobserved preference heterogeneity as 
fixed effects and derive parameter estimates from an OLS regression on deviations of the variables 
in equation 2 from their respective means.14 The model is then used to predict demand during 
2009-12 if flat-rate pricing had remained in effect. The predicted demand is then compared to the 
actual demand under water budgeting, and the difference is analyzed to estimate the demand effect 
of the water budget rate structure.  

For the IBR demand model, we implement a standard DCC model that assumes the 
unobserved preference heterogeneity is randomly distributed. The DCC framework models 
demand as a joint choice involving selection of a price block and the amount to consume within 
that block. The framework allows a household to optimally select a consumption level within a 
block or at the edge of a block (also called a “kink point” because the consumer’s budget constraint 
has an abrupt change of slope at these points). Within a block, demand is given by equation 2 but 
is implicitly conditional on the choice of that block and thus is referred to as a “conditional 
demand.” For expositional purposes below, we rewrite equation 2 as: ln(𝑤𝑤𝑖𝑖𝑧𝑧) = ln(𝑤𝑤𝑖𝑖𝑧𝑧

∗ ) + 𝜂𝜂𝑖𝑖 +
𝜀𝜀𝑖𝑖𝑧𝑧, where 𝑤𝑤𝑖𝑖𝑧𝑧

∗ = exp(𝛿𝛿𝑧𝑧𝑖𝑖𝑧𝑧)𝑝𝑝𝑖𝑖𝑧𝑧𝛼𝛼𝑦𝑦𝑖𝑖𝑧𝑧𝛾𝛾 is estimated demand. 
Under IBR pricing, the marginal water price 𝑝𝑝𝑖𝑖𝑧𝑧 differs across blocks. Due to the nonlinear 

budget constraint, the effective household budget 𝑦𝑦𝑖𝑖𝑧𝑧 also will differ across blocks to account for 
the fact that consumption is cheaper in the lower blocks. Thus unconditional demand with K price 
blocks can be written as (dropping the subscripts i and t for simplicity):  

 ln𝑤𝑤 =

⎩
⎪⎪
⎨

⎪⎪
⎧ ln𝑤𝑤0 + 𝜀𝜀,

ln𝑤𝑤∗(𝑝𝑝1,𝑦𝑦1) + 𝜂𝜂 + 𝜀𝜀,
ln𝑤𝑤1 + 𝜀𝜀,

ln𝑤𝑤∗(𝑝𝑝2,𝑦𝑦2) + 𝜂𝜂 + 𝜀𝜀,
ln𝑤𝑤2 + 𝜀𝜀,

⋮
ln𝑤𝑤∗(𝑝𝑝𝐾𝐾 ,𝑦𝑦𝐾𝐾) + 𝜂𝜂 + 𝜀𝜀,

                              −∞ < 𝜂𝜂 ≤ ln𝑤𝑤0 − ln𝑤𝑤∗(𝑝𝑝1,𝑦𝑦1)
ln𝑤𝑤0 − ln𝑤𝑤∗(𝑝𝑝1,𝑦𝑦1) < 𝜂𝜂 ≤ ln𝑤𝑤1 − ln𝑤𝑤∗(𝑝𝑝1,𝑦𝑦1)
ln𝑤𝑤1 − ln𝑤𝑤∗(𝑝𝑝1,𝑦𝑦1) < 𝜂𝜂 ≤ ln𝑤𝑤1 − ln𝑤𝑤∗(𝑝𝑝2,𝑦𝑦2)
ln𝑤𝑤1 − ln𝑤𝑤∗(𝑝𝑝2,𝑦𝑦2) < 𝜂𝜂 ≤ ln𝑤𝑤2 − ln𝑤𝑤∗(𝑝𝑝2,𝑦𝑦2)
ln𝑤𝑤2 − ln𝑤𝑤∗(𝑝𝑝2,𝑦𝑦2) < 𝜂𝜂 ≤ ln𝑤𝑤2 − ln𝑤𝑤∗(𝑝𝑝3,𝑦𝑦3)

     ⋮
ln𝑤𝑤𝐾𝐾−1 − ln𝑤𝑤∗(𝑝𝑝𝐾𝐾 ,𝑦𝑦𝐾𝐾) < 𝜂𝜂 < ∞                                  

 [3] 

13  Olmstead et al. (2007) also use equation 2 as the basis for a combined estimation, including both flat- and block-rate pricing 
data, but find evidence that some parameter estimates (notably price and income elasticities) may differ across pricing 
structures. To allow for this possibility, we forego the combined estimation and perform two separate estimations. 

14  We also estimated a random effects flat-rate model, which is structurally more similar to the DCC framework. Coefficient 
estimates generally were similar to the fixed-effects estimates, but the fixed-effects model exhibits better overall predictive 
accuracy. 
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Here, 𝑝𝑝𝑘𝑘 is the price associated with block 𝑘𝑘; 𝑦𝑦𝑘𝑘 is the consumer’s budget associated with block 
𝑘𝑘; 𝑤𝑤∗(𝑝𝑝𝑘𝑘,𝑦𝑦𝑘𝑘) is the estimated demand conditional on block 𝑘𝑘; 𝑤𝑤𝑘𝑘 is the quantity associated with 
kink point 𝑘𝑘; and the other notation is the same as in equation 2. It is apparent from equation 3 that 
the unobserved preference heterogeneity (𝜂𝜂) influences the block or kink point on which the 
consumer desires to consume; and the additional error term (𝜀𝜀) explains the deviation of actual 
consumption from estimated or “planned” consumption. Equation 3 is the basis for maximum 
likelihood estimation of the parameters in equation 2. Waldman (2000, 2005) provides a general 
statement of the likelihood function for the DCC model, which also forms the basis for predicting 
demand under IBR pricing. We also use this model to derive rate structures that generate equivalent 
revenue per unit, and compare their estimated demand effects against the actual rate structure that 
was implemented by EMWD.  

5. Results and discussion 

5.1 Flat-rate model 
We estimated several different specifications of the demand model in equation 2, and found that 
the performance of a relatively simple specification with few regressors was nearly 
indistinguishable from that of more complicated (and, for the DCC model, computationally 
burdensome) specifications.15 Table 2 shows the variables used in the analysis along with the 
parameter estimates and standard errors for the flat-rate model. Note that a constant term, 
education, household size, and irrigated area do not appear in the table because they drop out of 
the fixed effects estimation; however, these terms do appear later in the DCC model. Table 2 
summarizes results for seven different samples: the full sample (all 13,565 accounts); high, 
moderate, and low-usage accounts (i.e., 2003-08 average usage in the top, middle, and bottom 
thirds); and high-, moderate-, and low-income accounts (i.e., 2010 census income in the top, 
middle, and bottom thirds). All estimated parameters are significantly different from zero at well 
above the 99 percent confidence level. Signs and magnitudes generally are intuitive and exhibit 
similarities across subsamples. Some noteworthy observations include the following: 

Requests by the water district for increased water conservation efforts appear to produce a 5 
percent reduction in demand during the month in which a request is made. This is not an 
insignificant response to a request for voluntary action to support a public good.  

There appears to be a slight upward trend in overall water consumption through time (0.6 
percent per year) after controlling for other variables affecting demand; however, the high-usage 
subsample exhibits a downward trend. For the full sample, this amounts to a 3.6 percent increase 
in household demand during the observation period. This unexpected result could reflect the 
housing bubble of the mid 2000s, to the extent that rapidly rising home values create an additional 
income effect and/or increase the perceived marginal benefit of investing in one’s home (including 
landscaping and swimming pools).  

The estimated price elasticity (coefficient on 𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖𝑧𝑧)) for the full sample is -0.69. This estimate 
and the others for the subsamples are consistent with, though somewhat higher than, estimates 
from previous work that tend to average around -0.4 to -0.5, or around -0.6 for longer time periods 
(Espey et al. 1997, Dalhuisen et al. 2003). Considering the subsample regressions, price elasticity 
appears to decrease monotonically with usage but exhibits a non-monotonic trend with income. In 
absolute terms, we estimate that a 1 percent price increase would produce expected reductions of 
0.138 CCF/month from a high usage account, 0.123 CCF/month from a moderate usage account, 

15  It is also worth noting that both the flat-rate and water budget models include the appropriate Slutsky restriction as a constraint 
on the estimation to ensure the integrability conditions are satisfied. Slutsky restrictions are not always imposed on standard 
demand models (or, at least, not discussed in the subsequent analysis), but here it plays an essential role in proper estimation of 
the DCC framework. In both models the restriction binds; without it, income effects appear much larger and some of the 
estimated block probabilities in equation 3 are negative.  
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and 0.099 CCF/month from a low usage account. Thus the high-usage group is the most responsive 
in absolute terms, even though its price elasticity is lowest. The observed pattern in price 
elasticities across usage groups may reflect differing preferences for outdoor water use. Average 
irrigated areas for the high-, moderate-, and low-usage groups are 5,985, 3,512, and 3,034 square 
feet, respectively. The high-usage group appears qualitatively different in this regard, suggesting 
that it may be composed of households with strong preferences for outdoor landscaping who are 
more reluctant to reduce irrigation in response to price increases.  

Income elasticities are estimated by interacting the budget elasticity (coefficient on 𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖𝑧𝑧)) 
with the derived relationship between budget and income (see footnote 11). The estimated income 
elasticity for the full sample is 0.0009. This is notably lower than most previous estimates: in a 
meta-dataset used by Dalhuisen et al. (2003), the mean and median income elasticities were 0.43 
and 0.24, respectively. Our estimate is about one-half of one standard deviation below this mean. 
Although our analysis exhibits several of the characteristics that were found by Dalhuisen et al. 
(2003) to be significantly correlated with higher-income elasticity estimates, it appears that the 
Slutsky restriction is causing our estimate to be lower.16  

The model generally fits the data well, particularly when we consider average consumption 
through time, which is important for generating predictions beyond the observation period. Figure 
3 shows the observed and predicted usage for the full sample, both annually and monthly. The 
prediction error for 2005 looks large but is only 2.9 percent in relative terms. Analogous graphs 
for the six usage and income subsamples (not shown) exhibit similarly good predictions.   

5.2 Demand effect of water budgets 
The flat-rate model can be used to estimate the demand effect of introducing IBR water budgets 
in 2009. To do this, we create a new dataset that includes the same explanatory variables as in 
Table 2 but with values updated for the prediction period (2009-2012). We update conservation 
requests, ET, and household budgets accordingly. We also create new seasonal dummies and 
extrapolate the time trend into the prediction period. Finally, we set prices equal to the annual 
average real prices paid under water budgeting (shown in Table 1). Predicted demand thus 
corresponds to the hypothetical case in which flat-rate pricing continued beyond 2008, and prices 
were increased such that they matched the average annual prices paid under water budgeting. From 
the perspective of a water utility, this is a useful baseline from which to judge the demand effect 
of IBR water budgets, since such a flat-rate structure would produce revenues equal to those of the 
water budget structure under the null hypothesis that there is no demand effect.  

Figure 4 summarizes the estimated demand effect. The figure shows, beginning one year 
after the implementation of IBR water budgets, the average difference between observed and 
predicted (i.e., equivalent flat rate) demand for the previous 12 months. During the first year of 
implementation, IBR water budgets had a relatively small effect on residential water demand: 
between April 2009 and March 2010, observed demand is only 5.8 percent lower than predicted 
demand. However, the demand effect appears to grow through time. As of March 2011, two years 
after implementation, the 12-month moving average for observed demand is 10.3 percent below 
that for predicted demand. As of March 2012, three years after implementation, there is a 17.3 
percent difference. More recently, as of September 2012, the difference grows to 20.1 percent after 
plateauing around 18 percent for nearly a year.17 Water budgeting appears to have had a significant 
effect on demand; however, it has required a substantial amount of time for that effect to be 
realized. This result is consistent with Dalhuisen et al. (2000), who find that households appear 
more responsive to price changes when they have had more time to adapt. 

16  When we relax the Slutsky restriction, the estimated income elasticity for the full sample is 1.16.  
17  Omitting the time trend from the predictions decreases these estimates by less than 2 percent.  
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Another way to gauge the water budget effect is as follows. During the most recent 12-
month period in our data, the average price paid per CCF under water budgeting is 3.7 percent 
higher (in real terms) than the average price paid in 2008. Our model predicts that flat rates would 
have had to increase by nearly 48 percent to achieve the same level of demand observed during 
this period. Notably, the average marginal price paid during this period is 34 percent higher than 
in 2008. This suggests that marginal prices may be having a stronger influence on consumption 
than average prices, and helps to inform the ongoing debate on this subject.18 Also of interest, 
average prices paid under water budgeting were higher prior to this most recent 12-month period, 
but the estimated demand effect was smaller. This suggests that under water budgeting, households 
may be gradually adopting relatively permanent water conservation habits as they learn how to use 
water more efficiently – habits that are retained even when prices subsequently decrease. This 
observation could motivate adding a subjective learning component to Borenstein’s (2009) 
hypothesis about utility demand being driven by consumption “rules” that are fixed prior to a 
consumption period and updated only when feedback is received in the form of a bill.  

Results for the high and moderate usage and income subsamples are generally the same as 
for the full sample: the introduction of water budgets caused consumption to decrease more than 
predicted if flat rates had been set equal to the average prices paid under block rates. For the low-
usage and income subsamples, the water budget effect was strong enough to overcome decreases 
in average prices paid by these groups under increasing block rates. In other words, our model 
predicts increased demand by these groups if flat rates were set equal to average prices paid under 
block rates, but we observe decreased demand. Not surprisingly, average marginal prices paid by 
these groups did increase under block rates. This again is strongly suggestive of the importance of 
marginal rather than average prices in determining residential water consumption levels.  

5.3 Block-rate model 
Estimation results for the DCC model are shown in Table 3. Parameter estimates can be interpreted 
directly as the effect of each regressor on conditional demand (i.e., holding block choice fixed); 
simulations are needed to interpret the effect of each regressor on unconditional demand. As with 
the flat-rate model, the parameter estimates generally have intuitive signs and magnitudes and are 
all significantly different from zero at well above the 99 percent level. Similar to Gilg and Barr 
(2006), we find a positive relationship between water use and education and, somewhat 
unexpectedly, a slightly larger coefficient on the fall dummy than on the summer dummy. 
Conservation requests appear to have a larger effect under water budgeting (though only one such 
request was made, in January 2011), and the time trend is now negative.  

At the household level, the model fit is not particularly good. When we evaluate expected 
household consumption as 𝑤𝑤�𝑖𝑖𝑧𝑧 = 𝐸𝐸𝜂𝜂,𝜀𝜀[𝑤𝑤𝑖𝑖𝑧𝑧

∗  exp (𝜂𝜂) exp(𝜀𝜀)], where 𝑤𝑤𝑖𝑖𝑧𝑧
∗ = exp(𝛿𝛿𝑧𝑧𝑖𝑖𝑧𝑧)𝑝𝑝𝑖𝑖𝑧𝑧𝛼𝛼𝑦𝑦𝑖𝑖𝑧𝑧𝛾𝛾 and 

different portions of the distribution of 𝜂𝜂 correspond to different conditional demand curves, we 
get an adjusted R2 value less than zero.19 When we set 𝜂𝜂 and 𝜀𝜀 equal to their means (zero) and 
evaluate expected household consumption as 𝑤𝑤�𝑖𝑖𝑧𝑧 = 𝑤𝑤𝑖𝑖𝑧𝑧

∗ , we get an adjusted R2 value of 0.1661. 
Although the first approach is the correct one, close inspection of the results reveals that the 
disturbance term simulations, in conjunction with our increasing convex demand function, produce 

18 Ito (2012) finds strong evidence of consumer responsiveness to average rather than marginal prices for the case of electricity 
demand. Borenstein (2009) also finds evidence that electricity consumers are responding either to average price or expected 
marginal price (which entails averaging over uncertain consumption) rather than the actual marginal price paid. Nataraj and 
Hanemann (2011) conclude that water consumers do respond to changes in marginal price. The extent to which these 
discrepancies are due to fundamental differences between water and electricity consumption, and/or between the price 
structures under investigation, is a topic for future work. 

19 We use multidimensional quadrature (Judd 1999) to evaluate the expectation. We use Gauss-Legendre quadrature to integrate 
over the piecewise distribution of 𝜂𝜂 and Gauss-Hermite quadrature to integrate over 𝜀𝜀. 
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some very large simulated consumption values that tend to reduce the model fitness. However, 
this approach provides a good fit to the average monthly data, as can be seen in Figure 5.  

Price and income elasticities are estimated by simulating the demand effects of a 1 percent 
increase in all prices, and a 1 percent increase in household incomes, throughout the water budget 
observation period. Results are shown in Table 3. The price elasticity estimate  
(-0.58) is close to that for the full sample flat-rate model, but the income elasticity estimate (0.05) 
is substantially larger than its flat-rate counterpart though still small in magnitude. Our block-rate 
income elasticity estimate is close to that estimated by Olmstead et al. (2007) in a random-effects 
model of flat-rate pricing (∼0.04) but below their DCC estimates for IBR pricing (∼0.18), all of 
which they note are low compared to previous estimates. Those authors cite evidence that omitting 
household characteristics from the regression (as is common in previous studies) tends to increase 
the estimated income elasticity due to correlations between those characteristics and income. 
Because our fixed (flat rate) and random effects (water budgets) panel data specifications 
implicitly capture all constant household characteristics, this may help to explain our relatively 
low-income elasticity estimates.  

5.4 Demand effects of alternative block-rate structures  
As described above, EMWD has implemented a relatively sophisticated water budget rate structure 
with four blocks that vary in magnitude across households and through time. The IBR water budget 
structure was designed, in part, to be fiscally neutral. Although we cannot use our limited sample 
to rigorously test for fiscal neutrality, our data nonetheless appears consistent with it: the real 
average price paid (revenue received) per CCF in our dataset increased by less than 4 percent over 
more than three years since the pricing change. A natural question that arises is: could the existing 
rate structure be modified such that demand is further reduced while the average revenue per unit 
is maintained?  

There are obviously many alternatives to consider. Here we focus on some relatively 
simple modifications to the existing rate structure that intuitively might be of interest to water 
utilities. For each scenario, we find the parameters of the hypothetical rate structure that produce 
the same expected revenue per CCF as the current rate structure, and we compare the associated 
expected demand against that for the current rate structure. For all scenarios, we use the data from 
the most recent 12-month period in our dataset as the basis for the simulations.  

Figure 6 summarizes the effects of several rate structures that reduce demand below the 
current baseline while maintaining stable revenue per unit.20 Scenarios 1-7 maintain the existing 
rate structure but make changes to its quantity and price parameters. A simple but effective 
alternative is scenario 2 (20 percent decrease in block 2 size), which would decrease expected 
demand by 4.3 percent while maintaining stable revenues per unit of water consumed. This has 
about the same demand effect as scenario 5, which reallocates one-quarter of block 2 into block 3 
but leaves the sum of blocks 2 and 3 unchanged (whereas scenario 2 reduces this sum by decreasing 
the size of block 2). Scenarios 6-7 examine the demand effect of reallocating additional block 2 
water into block 3, and show that the effect increases sharply. Reallocations like these might be 
justified by a water utility as a means to incentivize turf grass removal if lawns are deemed 
“excessive” in certain climates. Scenario 8 considers simplifying the rate structure by removing 
the “wasteful” water use block, and shows that a simultaneous 35 percent increase in the block 3 
price would reduce demand slightly while maintaining stable average revenue. Alternatively, 
scenario 9 considers complicating the rate structure by adding a new block between blocks 2 and 
3 with a price that maintains the increasing block-rate structure and finds a demand effect similar 
to that in scenario 8.  

20  In all cases the expected revenue per CCF is within 0.5 percent of the baseline. We investigated other rate structures that 
ultimately could not maintain similar revenue per unit and are thus not reported here.  
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Overall these simulations suggest that there are relatively small conservation gains to be 
realized from fundamentally changing the existing rate structure by adding or removing blocks 
when fiscal neutrality must be maintained. Rather, most of the conservation potential appears to 
be associated with changes in the existing blocks 2 and 3. This is perhaps not surprising because 
the marginal consumption of most households occurs within these blocks.  

6. Conclusions and implications  

This study utilizes a high-quality panel dataset of household water consumption for a large 
Southern California water district to estimate the demand effect of switching from flat-rate pricing 
to increasing block-rate water budgets. More than three years after the rate structure changed, we 
estimate that demand under IBR water budgets was at least 18 percent below the level it would 
have been under a comparable flat-rate price structure. Whereas average prices paid rose by less 
than 4 percent under the block-rate structure, average prices paid under the flat-rate structure would 
have had to rise by nearly 48 percent to achieve the same demand reduction. These results suggest 
that IBR water budgets are potentially a highly effective conservation tool, although a substantial 
amount of time is required for demand reductions to be realized. Furthermore, to the extent that 
more complicated IBR water budget structures are both more costly to implement and harder for 
consumers to understand (and thus respond to), our findings suggest that utilities can safely pursue 
relatively simpler rate structures, with perhaps only three tiers, without foregoing significant 
conservation opportunities.  

Our analysis also finds some evidence of a price-induced “ratcheting effect,” whereby 
households that are faced with higher water prices – particularly higher marginal prices that are 
characteristic of IBR structures – learn how to be more water efficient, adopt those new habits, 
and thus are less prone to “back-sliding,” if and when prices decline in the future. This finding, 
although somewhat circumstantial, is consistent with Borenstein’s (2009) hypothesis about the 
formation of consumption “rules” in electricity demand analysis and lends additional legitimacy 
to related modeling efforts, including formal investigations of learning and habit formation in 
utility demand contexts.  

For water utilities that are considering adopting IBR water budgets as a conservation tool, 
this study provides strong support for doing so, with the caveat that conservation goals may take 
years to achieve. Efforts to promote quicker re-learning of water consumption habits should hasten 
the attainment of those goals, but exactly how to go about doing this is a topic for future work. A 
potentially fruitful line of research would investigate the extent to which non-price instruments 
and/or neighborhood effects influence learning and habit formation. Some water utilities have 
begun reporting local average water consumption on individual bills to give households a better 
idea of how their own consumption compares to a relevant peer group. Such information, 
combined with a high marginal price for “excessive” water use, could prove to be a highly effective 
approach to encouraging urban water conservation.  
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Table 1: Summary statistics.  

Variable 2003 2004 2005 2006 2007 2008 2009 2010 2011 
Consumption 
(CCF/month)a 20.70 21.14 20.12 20.77 20.99 19.74 17.77 15.99 15.73 

ET (in/month)b 4.67 4.87 4.59 4.73 4.87 4.81 4.70 4.55 4.85 
Conservation 
requests  0.17 0.00 0.08 0.25 0.08 0.08 0.08 0.00 0.08 

Nominal price 
($/CCF) 1.43 1.46 1.53 1.62 1.69 1.85 

1.27 
2.33 
4.17 
7.63 

1.43 
2.61 
4.68 
8.56 

1.44 
2.64 
4.73 
8.65 

Nominal average 
price paid ($/CCF) 1.93 2.10 2.05 

Real price 
(2010$/CCF) 1.66 1.66 1.68 1.72 1.77 1.86 

1.30 
2.37 
4.25 
7.78 

1.43 
2.61 
4.68 
8.56 

1.39 
2.54 
4.55 
8.33 

Real average price 
paid (2010$/CCF) 1.98 2.10 1.98 

Real budget 
(2010$/month) 316.26 317.45 318.05 319.20 320.78 316.70 311.07 309.96 309.44 

Household size (#) 3.53 
Irrigated area  
(sq-ft) 4,177 

Education 0.50 
a  CCF = hundred cubic feet. 
b  A principle components analysis on all available weather data during the observation period for one of 

the CIMIS stations reveals that ET captures 94 percent of the total weather variability.  
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Table 2: Flat-rate model parameter estimates and standard errors. 

Variable Description Full 
Sample 

High 
Usage 

Moderat
e Usage 

Low 
Usage 

High 
Income 

Moderat
e Income 

Low 
Income 

Spring Dummy for 
Apr-Jun 

0.1588 
(0.0016

) 

0.1812 
(0.0023

) 

0.1698 
(0.0029) 

0.1290 
(0.0028

) 

0.1845 
(0.0030

) 

0.1525 
(0.0028) 

0.1414 
(0.0027

) 
Summer Dummy for 

Jul-Sep 
0.4317 
(0.0019

) 

0.4737 
(0.0035

) 

0.4615 
(0.0034) 

0.3743 
(0.0033

) 

0.4887 
(0.0036

) 

0.4146 
(0.0033) 

0.3951 
(0.0033

) 
Fall Dummy for 

Oct-Dec 
0.3357 
(0.0011

) 

0.3821 
(0.0020

) 

0.3459 
(0.0019) 

0.2779 
(0.0020

) 

0.4062 
(0.0020

) 

0.3112 
(0.0020) 

0.2933 
(0.0019

) 
Conserv

e 
Dummy for 
conservatio
n request 

-0.0511 
(0.0006

) 

-0.0550 
(0.0024

) 

-0.0521 
(0.0024) 

-0.0455 
(0.0023

) 

-0.0547 
(0.0021

) 

-0.0441 
(0.0020) 

-0.0537 
(0.0023

) 
ET ET 

(in/month) 
0.0994 
(0.0006

) 

0.1123 
(0.0008

) 

0.1023 
(0.0008) 

0.0819 
(0.0008

) 

0.1082 
(0.0009

) 

0.0991 
(0.0008) 

0.0911 
(0.0008

) 
Time 
trend 

Linear 
annual 

increments 

0.0059 
(0.0004

) 

-0.0186 
(0.0006

) 

0.0045 
(0.0005) 

0.0279 
(0.0007

) 

0.0130 
(0.0005

) 

0.0039 
(0.0006) 

0.0033 
(0.0006

) 
ln(pit) log real 

price 
-0.6920 
(0.0123

) 

-0.4409 
(0.0191

) 

-0.6258 
(0.0212) 

-0.8598 
(0.0256

) 

-0.7627 
(0.0206

) 

-0.6801 
(0.0217) 

-0.7292 
(0.0236

) 
ln(yit) log real 

budget 
0.0028 
(0.0001

) 

0.0016 
(0.0006

) 

0.0078 
(0.0008) 

0.0189 
(0.0012

) 

0.0044 
(0.0009

) 

0.0039 
(0.0006) 

0.0030 
(0.0006

) 
Adjusted 

R2 
Model fit 0.3438 0.3860 0.3838 0.2721 0.3905 0.3460 0.4000 

Income 
elasticity 

1% change 
in income 

0.0009 0.0005 0.0026 0.0063 0.0015 0.0013 0.0010 
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Table 3: Block-rate model parameter estimates and standard errors. 

Variable Description Estimate  
(Std Err) 

Constant Constant 0.1135 
(0.0134) 

Education Fraction of census tract residents reporting  
“at least some college” or more education 

0.5355 
(0.0087) 

HHS Household size (# of persons) 0.1309 
(0.0012) 

IA Irrigated area (1000 sq ft) 0.0303 
(0.0006) 

Spring Dummy for Apr-Jun 0.2392 
(0.0053) 

Summer Dummy for Jul-Sep 0.5352 
(0.0072) 

Fall Dummy for Oct-Dec 0.5731 
(0.0051) 

Conserve Dummy for conservation request -0.1412 
(0.0053) 

ET ET (in/month) 0.1545 
(0.0016) 

Time trend Linear annual increments -0.0906 
(0.0031) 

ln(pit) log real price -1.0505 
(0.0090) 

ln(yit) log real budget 0.2921 
(0.0022) 

ση Standard deviation for 𝜂𝜂 0.8486 
(0.0025) 

σε Standard deviation for 𝜀𝜀 0.2998 
(0.0017) 

Price elasticity Demand response to 1% change in all prices -0.5759 
Income elasticity Demand response to 1% change in income 0.0520 
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Figure 1: Comparison of observed and predicted ET for a sample climate zone 

 

 

Figure 2: Selected statistics in relative terms. 
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Panel A: average annual usage.  

 

Panel B: average monthly usage.  

 

Figure 3: Observed and predicted consumption for the full sample under flat-rate pricing. 
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Figure 4: Estimated demand effect of IBR water budgets, 12-month moving average.a 
a  Measured as the difference between observed demand under IBR water budgets and 

predicted demand under comparable flat-rate pricing. 
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Panel A: time trends. 

 

Panel B: linear regression of predicted average values on observed average values.  

 

Figure 5: Observed and predicted average monthly consumption under block-rate pricing. 
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Figure 6: Demand effect of alternative block-rate structures. 
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